Journal of Navigation and Port Research 2012;36(7):585-590.
Published online September 30, 2012.
Coastal Circulation and Bottom Change due to Ocean Resort Complex Development
Pill-Sung Kim, JoongWoo Lee, JeongSeok Kim
Abstract
On the basis of the potentials for the growth of local economy and the result of investigation of the ocean space development status, an ocean resort complex was proposed at the small harbor with a parallel beach in the east coast of Korea. As the development plan needs to reclaim the noticeable amount of coastal water area together with the applied shore facilities, it is necessary to analyze their impacts. Here, it was intended to analyze the coastal environment change such as water circulation and bottom change because of the development plan. A horizontal two-dimensional numerical model was applied to represent the combined impact of wind waves and tidal currents to sediment transport in that coastal region. Based on the result of 30 days tidal current simulations considering major four tidal components of M2,S2,K1 and O1 for the upper and lower boundaries and wind field data, bottom change was discussed. Flow velocities were not changed much at outer breakwater of Yangpo harbor. Bottom was eroded by maximum 1.7m after construction but some locations such as lee side of outer breakwater and some islets near the entrance shows isolated accretions. Although it needs more field observations for bottom change in the period of construction, the numerical calculation shows that there exist small impacts near the entrance area and coastal boundaries because of the development.
Key Words: ocean resort;tidal current;sediment transport;accretion;bottom change;wind wave
TOOLS
METRICS Graph View
  • 372 View
  • 1 Download
Related articles


ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
C1-327 Korea Maritime and Ocean University
727 Taejong-ro, Youngdo-gu, Busan 49112, Korea
Tel: +82-51-410-4127    Fax: +82-51-404-5993    E-mail: jkinpr@kmou.ac.kr                

Copyright © 2024 by Korean Institute of Navigation and Port Research.

Developed in M2PI

Close layer
prev next